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1. Introduction:

The field: Computational Language Documentation
The task: Unsupervised Word Segmentation (UWS) from speech

2. Our Contribution: An attention-based pipeline for UWS from speech

PART 1: Attention for segmentation 
PART 2: Speech discretization in low-resource settings 

3. Conclusion

This presentation agenda:
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Introduction



Computational Language Documentation (CLD)
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➔ 50 to 90% of the currently spoken 
languages will go extinct before 2100 [1]

➔ Manually documenting all these languages 
is infeasible

Figure: A field linguist recording utterances 
from a native speaker.

1. CLD | 2. UWS | 3. Our Approach



Computational Language Documentation (CLD)
 

GOAL: to automatically retrieve information about 
language structures to speed up language documentation

➔ 50 to 90% of the currently spoken 
languages will go extinct before 2100 [1]

➔ Manually documenting all these languages 
is infeasible

1. CLD | 2. UWS | 3. Our Approach
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Figure: A field linguist recording utterances 
from a native speaker.



Approaches for CLD: Documentation Corpora
 

7
s

➔ Small size (difficult to collect)
➔ Often lack written form (oral-tradition languages)
➔ Parallel information (translations instead of transcriptions)

Translations 
to a high-resource 

language [2]

SPEECH

1. CLD | 2. UWS | 3. Our Approach
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➔ Small size (difficult to collect)
➔ Often lack written form (oral-tradition languages)
➔ Parallel information (translations instead of transcriptions)

1. Deal with speech
2. Be robust to low-resource
3. Incorporate bilingual (or multilingual) annotations 

Therefore, CLD approaches need to...

Approaches for CLD: Documentation Corpora
 

1. CLD | 2. UWS | 3. Our Approach
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UNSUPERVISED WORD SEGMENTATION (UWS) from speech

Example: Let’s imagine the speech utterance for “Hello my friend”.

HELLO MY FRIEND

1. CLD | 2. UWS | 3. Our Approach
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HELLO MY FRIEND

UNSUPERVISED WORD SEGMENTATION (UWS) from speech
1. CLD | 2. UWS | 3. Our Approach

We want a system which outputs time stamps corresponding to boundaries.



➔ The UWS task is more often solved in the symbolic domain (grapheme or 
phonemes) [3,4,5,6]
◆ Transcribing one minute of audio takes on average one hour and a half of work from a 

trained linguist [38]

➔ For speech, there’s mostly research on Unsupervised Term Discovery, which 
produces a partial segmentation of the speech signal [7-9]
◆ Focus of Zero Resource Speech Challenge these last years [36,37]
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1. CLD | 2. UWS | 3. Our Approach

Literature in (monolingual) UWS
 



What we propose: Grounding Segmentation on Translations

 Our system outputs segmentation based on…

1. CLD | 2. UWS | 3. Our Approach
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What we propose: Grounding Segmentation on Translations

 

SALUT MON AMI
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Collapsed boundary 
due to the bilingual 
alignment

Our system outputs segmentation based on… sentence-level translations.

1. CLD | 2. UWS | 3. Our Approach



Grounding Segmentation on Translations

 

SALUT MON AMI

➔ In this setting, all our boundaries have an annotation: the bilingual 
information aligned.¹
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SALUT

MON

AMI

1. CLD | 2. UWS | 3. Our Approach

¹Using phonemes (textual domain), this bilingual segmentation setting was studied in [10, 11].
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1. CLD | 2. UWS | 3. Our Approach

Bilingual UWS from Speech in Low-resource Settings

SALUT MON AMI
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1. CLD | 2. UWS | 3. Our Approach

SPEECH DISCRETIZATION
phn1 phn2 phn3 phn1 phn4 ph6 phn10 phn1 phn5 phn4 phn1 phn7

(1) Speech 
Discretization

➔ Accommodates the challenge of processing speech in low-resource 
settings by first creating an unsupervised discretization of the signal

Bilingual UWS from Speech in Low-resource Settings
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1. CLD | 2. UWS | 3. Our Approach

SALUT MON AMI

SPEECH DISCRETIZATION
phn1 phn2 phn3 phn1 phn4 ph6 phn10 phn1 phn5 phn4 phn1 phn7

(1) Speech 
Discretization

(2) Bilingual 
Alignment

Sentence-level 
Alignment

Bilingual UWS from Speech in Low-resource Settings
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1. CLD | 2. UWS | 3. Our Approach

SALUT MON AMI

SPEECH DISCRETIZATION
phn1 phn2 phn3 phn1 phn4 ph6 phn10 phn1 phn5 phn4 phn1 phn7

(1) Speech 
Discretization

(2) Bilingual 
Alignment

(3) 
Segmentation

Bilingual UWS from Speech in Low-resource Settings
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1. CLD | 2. UWS | 3. Our Approach

SALUT MON AMI

SPEECH DISCRETIZATION
phn1 phn2 phn3 phn1 phn4 ph6 phn10 phn1 phn5 phn4 phn1 phn7

(1) Speech 
Discretization

(2) Bilingual 
Alignment

(3) 
Segmentation

PART 1: (2) and (3)
PART 2: (1) and final results

Bilingual UWS from Speech in Low-resource Settings

 



PART 1
A Bilingual Attention-based 

UWS Model

Corresponding publications:
● Empirical Evaluation of Sequence-to-Sequence Models for Word Discovery in Low-resource Settings. Boito 

et al. INTERSPEECH 2019.
● Investigating Alignment Interpretability for low-resource NMT. Boito et al. Machine Translation Journal: Special 

Issue on Machine Translation for Low-resource Languages. Springer Netherlands 2021.



21

1. Pipeline | 2. Experimental protocol | 3. Results

Towards Bilingual Supervision

➔ Sequence-to-sequence (seq2seq) models interfaced with attention emerged 
as popular solutions for a variety of NLProc tasks: 
◆ Automatic Speech Recognition [24,25] (Source: speech, Target: text)
◆ Text-to-Speech Synthesis [22,23] (Source: text, Target: speech)
◆ Neural Machine Translation [12,15,16] (Source: text/speech, Target: text)

Input Sequence (SOURCE)

Output Sequence (TARGET)

ATTENTION
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Neural Machine Translation (NMT) models

SOURCE

Decoder

Encoder

NMT system

Attention 
Layer

TARGET

➔ Trained with bilingual datasets

➔ Attention Layer captures the importance of 
source tokens for generating each target 
token

➔ Posterior to training, the output of this layer 
can be visualized

1. Pipeline | 2. Experimental protocol | 3. Results

Towards Bilingual Supervision
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Decoder

Encoder

NMT system

Attention 
Layer

TARGET Figure: soft-alignment heatmaps from Bahdanau et al. 2015 [12]

1. Pipeline | 2. Experimental protocol | 3. Results

SOURCE

Neural Machine Translation (NMT) models

Towards Bilingual Supervision
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Speech Discretization

NMT system

1. Pipeline | 2. Experimental protocol | 3. Results

Decoder: (TARGET) 
phn1,phn2,phn3,phn4,phn10,phn1...

Encoder: (SOURCE)
word1,word2,word3,word4...

Producing Bilingual Alignment and Segmentation
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Decoder: (TARGET) 
phn1,phn2,phn3,phn4,phn10,phn1...

Encoder: (SOURCE)
word1,word2,word3,word4...

Speech Discretization

NMT system

 phn1 phn2 phn3 phn4 phn10 phn1 phn2

word1

word2

word3

word4

word2

1. Pipeline | 2. Experimental protocol | 3. Results

Producing Bilingual Alignment and Segmentation
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Speech Discretization

NMT system

 phn1 phn2 phn3 phn4 phn10 phn1 phn2

word1

word2

word3

word4

word2

Segmentation:
phn1phn2, phn3phn4phn10phn1, phn2

Alignment:
(phn1phn2, word2); 
(phn3phn4phn10phn1, word3);
(phn2, word4)

1. Pipeline | 2. Experimental protocol | 3. Results

Decoder: (TARGET) 
phn1,phn2,phn3,phn4,phn10,phn1...

Encoder: (SOURCE)
word1,word2,word3,word4...

Producing Bilingual Alignment and Segmentation
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R1. Can we use the soft-alignment probability matrices learned 
during NMT training for segmentation in low-resource settings?

R2. What is the impact of the type of attention mechanism?

R3. What is the impact of dataset size? 

R4. What is the language impact? 
Not presented here, but investigated in Boito et al. [13] 

1. Pipeline | 2. Experimental protocol | 3. Results

Bilingual UWS: Research Questions
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➔ We start from the topline performance expected for a speech discretization 
model: the true phones in the target language.

➔ We compare our model against a strong (monolingual) baseline dpseg¹[3]. This 
baseline is a monolingual approach for UWS, very robust in low-resource.

¹ Available at https://homepages.inf.ed.ac.uk/sgwater/, parameters from [14].

R1. Can we use the soft-alignment probability matrices learned during 
NMT training for segmentation in low-resource settings?

1. Pipeline | 2. Experimental protocol | 3. Results

Experimental Settings

https://homepages.inf.ed.ac.uk/sgwater/


R2. What is the impact of the type of attention mechanism?

1. Pipeline | 2. Experimental protocol | 3. Results
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Experimental Settings: 3 different NMT models



NMT Models (1): RNN
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Global attention from Bahdanau et al. 2015 [12] 

Encoder 
biRNN stack

Decoder 
RNN stack

SOURCE TARGET

OUTPUT

A
tte

nt
io

n 
La

ye
r

Attention appears in the form of 
context vectors for each decoder 
step t.

Computed using the set of source 
annotations H and the last state of 
the decoder network st-1 (translation 
context).

The align layer is a feed-forward 
neural network trained jointly.

1. Pipeline | 2. Experimental protocol | 3. Results



NMT Models (2): Transformer
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Encoder Layer

Multi-head 
Attention 

La
ye

r N
or

m

S
O

U
R

C
E

V
K
Q

Feed 
Forward

La
ye

r N
or

m

Decoder Layer

Multi-head 
Attention 

La
ye

r N
or

m

TA
R

G
E

T

V
K
Q

Multi-head 
Attention 

V
K
Q

Encoder Stack 
Output

La
ye

r N
or

m Feed 
Forward

La
ye

r N
or

m

From a pair of key-value vectors and a 
query vector, the attention layer 
produces the weighted sum.  

Weights computed by Scaled 
dot-product (SDP) Attention for each 
head.

Multi-head attention: SDP for several 
heads.

Multi-head attention from 
Vaswani et al. 2017 [15]

1. Pipeline | 2. Experimental protocol | 3. Results



NMT Models (3): 2D-CNN
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Pervasive attention from Elbayad et al. 2018 [16] 

Source and target sequences are 
encoded jointly. This acts as an 
attention-like mechanism, since 
individual source elements are 
re-encoded as the output is generated. 

Attention weight tensor ⍺ is computed 
from the last activation tensor HL, to 
pool the elements of the same tensor 
along the source dimension.

1. Pipeline | 2. Experimental protocol | 3. Results

SOURCE

TARGET
Dense

Net
OUTPUT

3D 
Tensor S

of
tm

ax



R2. What is the impact of the type of attention mechanism?

➔ RNN: Global Attention [12]
The attention layer creates context vectors for weighting each target token. 

➔ Transformer: Multi-head Attention [15]
Multiple attentions in parallel (heads) capture different equivalence functions 
between sequences.

➔ 2D-CNN: Pervasive Attention [16]
Joint encoding acts as an attention-like mechanism. Source elements are 
re-encoded as the output is generated.
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Experimental Settings: 3 different NMT models
1. Pipeline | 2. Experimental protocol | 3. Results



R3. What is the impact of dataset size? 

1. Pipeline | 2. Experimental protocol | 3. Results

5,130 sentences (4h of speech) from the documentation of 
Mboshi, an unwritten language spoken in Congo-Brazzaville.¹

34

Experimental Settings: 3 datasets

(MB-FR) Mboshi-French parallel corpus [17] 
documentation dataset; tailored sentences

¹For comparison, the original Transformer NMT model was trained on 4.5 million parallel sentences



R3. What is the impact of dataset size? 

33K EN-FR (1)

5K EN-FR (2) MB-FR (3)

Data impact 
analysis

1. Pipeline | 2. Experimental protocol | 3. Results
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Experimental Settings: 3 datasets

(MB-FR) Mboshi-French parallel corpus [17] 
documentation dataset; tailored sentences

(EN-FR) English-French parallel corpus [18]
librispeech augmentation in French; noisy aligned 
information (filtered)
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HELLO MY FRIEND

Inside the tolerance: a hit.
Outside the tolerance: a miss.

¹The tolerance window we use is defined on the Zero Resource Challenge 2017 Track 2.

Precision (P): 
Predicted & correct/predicted = 3/5

Recall (R): 
Predicted & correct / true = 3/4

F-score (F): 
2*(P*R)/(P+R) = 2/3

We evaluate it using tolerance windows.¹

1. Pipeline | 2. Experimental protocol | 3. Results

Experimental Settings: Evaluation



What about the alignment quality? 

1. Pipeline | 2. Experimental protocol | 3. Results

In a more practical sense:
Are all three of these good for our task?

How do we evaluate this without having 
gold (word-level) alignment information?

37

2D-CNNRNN Transformer

Experimental Settings: Evaluation



Alignment Assessment with AVERAGE NORMALIZED ENTROPY (ANE) 

Exploitable information

➔ Intuition: sharper alignments are 
more informative. 

➔ Soft-alignment probability 
matrix: one probability distribution 
per line (target symbol)

1. Pipeline | 2. Experimental protocol | 3. Results
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Experimental Settings: Evaluation



For every line in the matrix we compute 
normalized entropy (NE). NE

1. Pipeline | 2. Experimental protocol | 3. Results
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Experimental Settings: Evaluation
Alignment Assessment with AVERAGE NORMALIZED ENTROPY (ANE) 



For every line in the matrix we compute 
normalized entropy (NE). We average 
over sets of distributions.

Sentence
ANE

1. Pipeline | 2. Experimental protocol | 3. Results
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Experimental Settings: Evaluation
Alignment Assessment with AVERAGE NORMALIZED ENTROPY (ANE) 



Exploitability for our task

Sentence ANE scores

1. Pipeline | 2. Experimental protocol | 3. Results
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Experimental Settings: Evaluation
Alignment Assessment with AVERAGE NORMALIZED ENTROPY (ANE) 



Corpus
ANE

1. Pipeline | 2. Experimental protocol | 3. Results

➔ To summarize the quality of the 
soft-alignment probability matrices 
produced by a given NMT model using 
a given dataset

42

Experimental Settings: Evaluation
Alignment Assessment with AVERAGE NORMALIZED ENTROPY (ANE) 
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1. Pipeline | 2. Experimental protocol | 3. Results

Experimental settings and corpora:
https://gitlab.com/mzboito/attention_study

➔ We are able to train models in 
very low-resource settings, 
scoring some points behind the 
dpseg baseline (77.1 for MB). 
(R1)

➔ The RNN-based model 
performed the best in our setting. 
(R2)

Corpus ANE

0.38 0.56 0.18

Corpus ANE

0.41 0.73 0.68

Corpus ANE

0.42 0.58 0.59

F-score

UWS Results

Figure: Boundary F-score Results averaged over 5 runs [19]

https://gitlab.com/mzboito/attention_study
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1. Pipeline | 2. Experimental protocol | 3. Results

Experimental settings and corpora:
https://gitlab.com/mzboito/attention_study

➔ We can see the impact of data 
reduction, but some models are 
more sensitive to it than others.
(R3)

➔ Models with lower Corpus ANE 
reached better segmentation 
results (negative Pearson’s 
correlation relationship). 
(alignment assessment)

Corpus ANE

0.38 0.56 0.18

Corpus ANE

0.41 0.73 0.68

Corpus ANE

0.42 0.58 0.59

F-score

Figure: Boundary F-score Results averaged over 5 runs [19]

UWS Results

https://gitlab.com/mzboito/attention_study
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1. Pipeline | 2. Experimental protocol | 3. Results

Experimental settings and corpora:
https://gitlab.com/mzboito/attention_study

➔ How to choose a head from 
Transformer? [20,21] 

➔ We reported results using corpus 
ANE for selecting the head. 

We also experimented with:
◆ Models from 1 to 3 layers
◆ 1, 2 and 4 heads
◆ Intra- and inter-layer averaging

Corpus ANE

0.38 0.56 0.18

Corpus ANE

0.41 0.73 0.68

Corpus ANE

0.42 0.58 0.59

F-score

Figure: Boundary F-score Results averaged over 5 runs [19]

UWS Results

https://gitlab.com/mzboito/attention_study
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➔ We showed that we are able to apply this pipeline for bilingual 
segmentation starting from a perfect discretization for the speech

We now focus on generating real speech 
discretization in low-resource settings

1. Pipeline | 2. Experimental protocol | 3. Results

UWS Results



PART 2
Speech Discretization for UWS

Corresponding publications:
● Unsupervised Word Segmentation from Speech With Attention. Boito et al. INTERSPEECH 2018.
● Unsupervised Word Segmentation from Discrete Speech Units in Low-Resource Settings. Boito et al. ArXiv 2021.
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➔ Speech Discretization (SD) models produce a sequence of discrete 
speech units representing input utterances with no access to 
transcriptions [26-30]

phn1,phn2,phn3,
phn4,phn10,phn1

...

SD System

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results

Exploitable SD models for Low-Resource UWS
 



49

➔ Speech Discretization (SD) models produce a sequence of discrete 
speech units representing input utterances with no access to 
transcriptions [26-30]

phn1,phn2,phn3,
phn4,phn10,phn1

...

SD System

Exploitable SD models for Low-Resource UWS
 

What do we expect from our discretization process?

➔ The model needs to work well in low-resource. 

➔ The model needs to output a concise representation:
● The baseline dpseg cannot deal with sequences longer than 350 

units
● Our models can accommodate longer sequences, but it impacts 

performance (challenging alignment)

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results
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R5. Can we directly use the output of SD models as input for our 
bilingual UWS approach in low-resource settings?

SD for Bilingual UWS: Research Question
1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results

SALUT MON AMI

SPEECH DISCRETIZATION
phn1 phn2 phn3 phn1 phn4 ph6 phn10 phn1 phn5 phn4 phn1 phn7
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➔ Very efficient in low-resource settings

➔ Similar to a phone-loop model: 
◆ Each unit is modeled by an HMM/GMM
◆ The prior distribution over all HMMs is modeled by a Dirichlet Process

➔ Models:
1. HMM/GMM (HMM) [26]: Every possible sound can be a unit
2. Subspace HMM (SHMM) [27]: Prior over a phonetic subspace
3. Hierarchical Subspace HMM (H-SHMM) [28]: Subspace adaptation 

from different languages for phone prediction

Speech Discretization Models: Bayesian Generative Models
 

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results
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➔ Novel approaches for speech processing, popular in high-resource 
settings.

➔ Models:
1. VQ-Variational Auto-Encoder (VAE) [29]: inspired by dimensionality 

reduction architectures

VQ 
module

Encoder Decoder

Speech Discretization Models: Vector Quantization (VQ) Models 

Original 
audio

Reconstruction

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results
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➔ Models:
1. VQ-VAE [29]: inspired by input dimensionality reduction architectures

2. VQ-WAV2VEC [30]: inspired by self-supervised models trained with a 
context-prediction loss

Speech Discretization Models: Vector Quantization (VQ) Models 

Figure: The vq-wav2vec architecture. 
Figure taken from the original paper [30]

1. Encoder (X→Z)
2. Quantizer (Z→Z’)
3. Aggregator (Z’→C)

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results
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➔ We train all models with only 4 hours of speech. We focus on 
generating concise representations.
◆ Bayesian Models

● HMM/GMM (HMM)
● Subspace HMM (SHMM)
● Hierarchical Subspace HMM (H-SHMM)

◆ VQ Neural Models
● VQ-VAE
● VQ-WAV2VEC (V16)
● VQ-WAV2VEC (V36)

Trained on 4 hours 
of Mboshi data!

Experimental Settings
1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results
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Figure: Average Sequence Length for SD models Figure: Vocabulary (# units) for SD models

How concise is the model? How expressive is it?

Statistics Over the Produced Sequences
1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results
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Figure: Average Sequence Length for SD models Figure: Vocabulary (# units) for SD models

Statistics Over the Produced Sequences: Bayesian Models

➔ The Bayesian models produce a more concise output, closer to the reference 
➔ They also produce a similar number of units (excluding H-SHMM)

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results
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Figure: Average Sequence Length for SD models Figure: Vocabulary (# units) for SD models

Statistics Over the Produced Sequences: VQ Neural Models

➔ In order to reduce the length of the representation generated by VQ-based models, we 
are forced to also reduce the phone vocabulary.

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results
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H-SHMM output

Example: The same sentence, two approaches

VQ-VAE output

True Boundary
Output Boundary

Reference

Reference

Studying the SD Representation
1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results



59

Translation

Word-to-unit
Soft-alignment

Hard 
Segmentation

SD 
system

sentence-level alignment

Speech Units
NMT 

system

1. Speech Discretization 2.  Bilingual-rooted Segmentation

IN
PU

T

INPUT

O
U

TP
U

T

➔ 6 setups for SD: 
◆ Bayesian Models: HMM, SHMM, H-SHMM
◆ VQ Neural Models: VQ-VAE, VQ-WAV2VEC (V=16), VQ-WAV2VEC (V=36)

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results

Bilingual UWS from Speech in Low-resource Settings
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Translation

Word-to-unit
Soft-alignment

Hard 
Segmentation

SD 
system

sentence-level alignment

Speech Units
NMT 

system

1. Speech Discretization 2.  Bilingual-rooted Segmentation

IN
PU

T

INPUT

O
U

TP
U

T

➔ Best NMT model: RNN from Bahdanau et al. [12]

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results

Bilingual UWS from Speech in Low-resource Settings
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Figure: Boundary UWS F-score results for the different SD models, 
using the MB-FR dataset. The result is the average over 5 runs.

➔ Results for Mboshi

➔ 5 models, 6 setups
1. HMM
2. SHMM
3. H-SHMM
4. VQ-VAE
5. VQ-W2V V=16
6. VQ-W2V V=36

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results

Bilingual UWS from Speech: Results

1 2 3 4 5 6 topline
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Figure: Boundary UWS F-score results for the different SD models, 
using the MB-FR dataset. The result is the average over 5 runs.

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results

1 2 3 4 5 6 topline

➔ We notice a drop in 
performance, but we still 
successfully generate 
segmentation (R5)

➔ We are competitive against 
dpseg. Why?

➔ The bilingual information 
might be helping us for 
this noisier setup

Bilingual UWS from Speech: Results
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Figure: Boundary UWS F-score results for the different SD models, 
using the MB-FR dataset. The result is the average over 5 runs.

1. SD for UWS | 2. Models | 3. Representation Study | 4. Pipeline | 5. Final Results

1 2 3 4 5 6 topline

➔ Bayesian models are the 
most exploitable, in special 
SHMM and H-SHMM

➔ VQ-models are difficult to 
directly exploit for our task

➔ Also verified recently in 
Kamper and Nieker [31]

Bilingual UWS from Speech: Results



Conclusion

64
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➔ We proposed a pipeline for CLD able to:
◆ Process speech in low-resource settings
◆ Incorporate bilingual information, generating bilingual links

Conclusion

Translations 
to a well-documented 

language

SPEECH

Bilingual UWS from Speech in Low-resource Settings
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➔ We proposed a pipeline for CLD able to:
◆ Process speech in low-resource settings
◆ Incorporate bilingual information, generating bilingual links

➔ In this process we:
◆ Investigated different speech discretization approaches for UWS [32]

● Bayesian models produce a better representation, due to their 
Acoustic Unit Discovery modeling

Conclusion

Bilingual UWS from Speech in Low-resource Settings
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➔ We proposed a pipeline for CLD able to:
◆ Process speech in low-resource settings
◆ Incorporate bilingual information, generating bilingual links

➔ In this process we:
◆ Investigated different speech discretization approaches for UWS [32]
◆ Compared different attention-based NMT models in low-resource [19]

● Found the following ranking: RNN > 2D-CNN > Transformer

● Proposed a task-agnostic metric (ANE) for assessing quality in 
soft-alignment probability matrices

Conclusion

Bilingual UWS from Speech in Low-resource Settings
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➔ We proposed a pipeline for CLD able to:
◆ Process speech in low-resource settings
◆ Incorporate bilingual information, generating bilingual links

➔ In this process we:
◆ Investigated different speech discretization approaches for UWS [32]
◆ Compared different attention-based NMT models in low-resource [19]
◆ Achieved competitive results in a realistic scenario (only 5k sentences) 

against a strong monolingual baseline (dpseg).
● While not shown here, this trend was also verified in 4 other 

languages: Finnish, Hungarian, Romanian and Russian.

Conclusion

Bilingual UWS from Speech in Low-resource Settings
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➔ Application of SSL models for low-resource audio processing
◆ Fine-tuning multilingual models on target data
◆ Removing the bottleneck of low-resource audio processing

Conclusion

Future Work
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➔ Application of SSL models for low-resource audio processing
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➔ Application of SSL models for low-resource audio processing
◆ Fine-tuning multilingual models on target data
◆ Removing the bottleneck of low-resource audio processing

➔ Leveraging information inside the attention layer during training
◆ Biasing the alignment discovered, similar to Garg et al. [36] and 

Godard et al. [37]

➔ Investigation of the attention mechanism in end-to-end speech 
translation models
◆ If attention remains exploitable, we could perform UWS from speech

Conclusion

Future Work
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Alignment ANE
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ANE Application: Exploiting the Alignments
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We accumulate ANE for all the  
(discovered type, aligned information) pairs 

discovered by our best 5K models
in the whole corpus

This allow us to rank discovered alignments 
by their confidence.

Aligned pair



Alignment ANE: Type Discovery Results
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ANE over (discovered type, aligned information) 
pairs for the entire dataset

Confidence 
degree

● High-confidence alignments cover a small 
portion of the corpus, but have high precision

≤



Alignment ANE: Type Discovery Results
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ANE over (discovered type, aligned information) 
pairs for the entire dataset

Confidence 
degree

● Accepting a wider confidence window, we decrease 
precision results, but increase coverage

≤



Alignment ANE: Type Discovery Results
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Alignment ANE can be used for filtering the resulting lexicon, 
increasing type discovery results

≤



Alignment ANE: Type Discovery Results 
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➔ Low ANE: more frequently correct types, good alignment
➔ High ANE: more frequently incorrect types and alignments artifacts

Phoneme 
Sequence Grapheme

Aligned 
Information

1 SER1 sir </S>

2 HHAH1SH hush chut

3 FIH1SHER0 fisher fisher

4 KLER1K clerk clerc

5 KIH1S kiss embrasse

6 GRIH1LD grilled grilled

7 WUH1D would m’ennuierais

8 HHEH1LP help aidez

9 DOW1DOW0 dodo dodo

10 KRAE1BZ crabs crabes

Phoneme 
Sequence Grapheme

Aligned 
Information

1 AH0 a convenablement

2 IH1 Not a word ah

3 D Not a word riant

4 N Not a word obéit

5 YUW1 you diable

6 IH1 Not a word qu’en

7 AE1T at laquelle

8 Z Not a word bas

9 YUW1P Not a word </S>

10 L Not a word parfaitement

Top low alignment ANE pairs for EN5K. Top high alignment ANE pairs for EN5K.
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➔ Investigation of the attention mechanism in end-to-end speech 
translation models

SELMA stands for Stream Learning for Multilingual Knowledge Transfer

➔ Platform for journalists to browse multilingual data from colleagues

➔ The goal is to develop speech technologies in 30 different languages, 
many of them low-resource
◆ Speech Recognition;
◆ Speech-to-Text Translation; 
◆ Speech-to-Speech Translation; 
◆ Speech and Textual Named Entity Recognition.

Conclusion

SELMA Consortium Project¹

¹ SELMA is a European Horizon 2020 Research and Innovation Action (grant agreement No 957017). https://selma-project.eu/

https://selma-project.eu/
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