A brief (low-resource) speech processing adventure in the realm of self-supervised models

A collection of studies on the use of wav2vec models for low-resource and fair speech processing techniques

Marcely ZANON BOITO, PhD Research Scientist @ **NAVER** Labs Europe

How did I even end up here?

Master of Science Informatics Grenoble

2x Computer Science (ENSIMAG + UFRGS) + Master of Science (MOSIG UGA)

2017 - 2021 Thesis on Unsupervised Word Segmentation for Computational Language Documentation

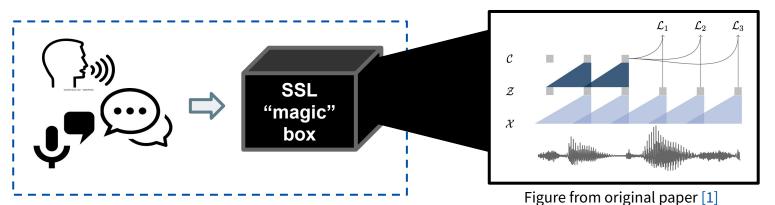
2021 - 2022 Postdoc in (Multilingual, Low-resource) * Speech Translation

2022 - Postdoc in (Multimodal, Simultaneous) * Speech Processing

The connection: Self-supervised Speech Processing blocks

These models emerged as popular foundation blocks for speech pipelines. They are trained using only audio examples and can reach the billions of parameters [1-5].

The wav2vec family of models: wav2vec "1.0"



Building a rich feature extractor for acoustic models in ASR

- 1. Encoder Network (CNN stack) $f: X \rightarrow Z$
- 2. Context Network (CNN stack) $g: Z \rightarrow C$
- 3. The network is trained on the **contrastive loss**:
 - a. We sample negative examples from other audios, our set of *distractors*
 - b. The network needs to correctly identify the future sample from the current example amidst this set

The wav2vec family of models: vq-wav2vec

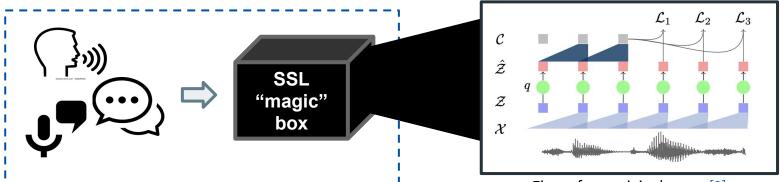


Figure from original paper [3]

Discretization allows us to "directly plug" it into NLP tasks

- 1. Encoder Network (CNN stack) $f: X \rightarrow Z$
- 2. Quantization Network (Vector Quantized Variational Autoencoder) $q: Z \rightarrow \hat{Z}$
- 3. Context Network (still a CNN stack) $q : \hat{Z} \rightarrow C$

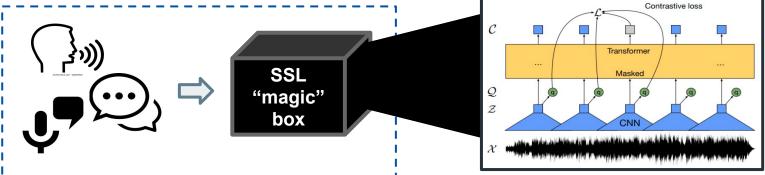


Figure from original paper [4]

Remember that Context Network? Throw a Transformer at it!

- 1. Encoder Network (CNN stack) $f: X \rightarrow Z$
- 2. Quantization Network (Vector Quantized Variational Autoencoder) $q: Z \rightarrow \hat{Z}$
- 3. Context Network (Transformer Encoder stack) $q: Z \rightarrow C$

The discrete representation is not the input of the Transformer stack, it is instead used as objective by the loss over the learned continuous representation

Base: 12

transformer layers

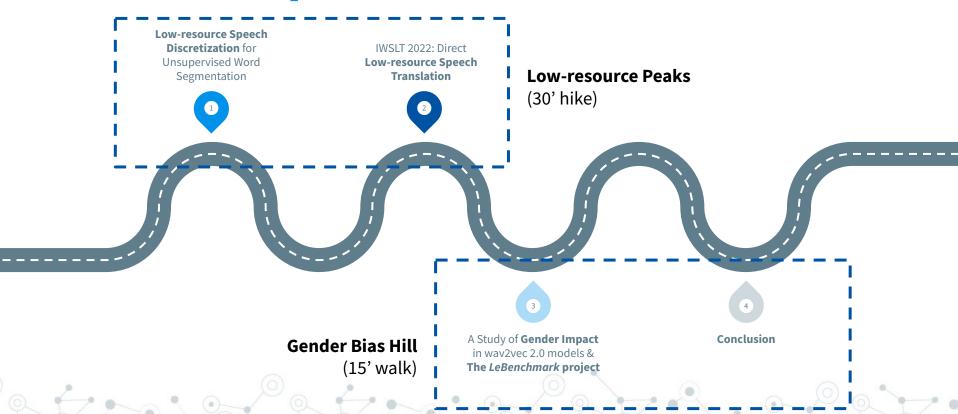
Large: 24

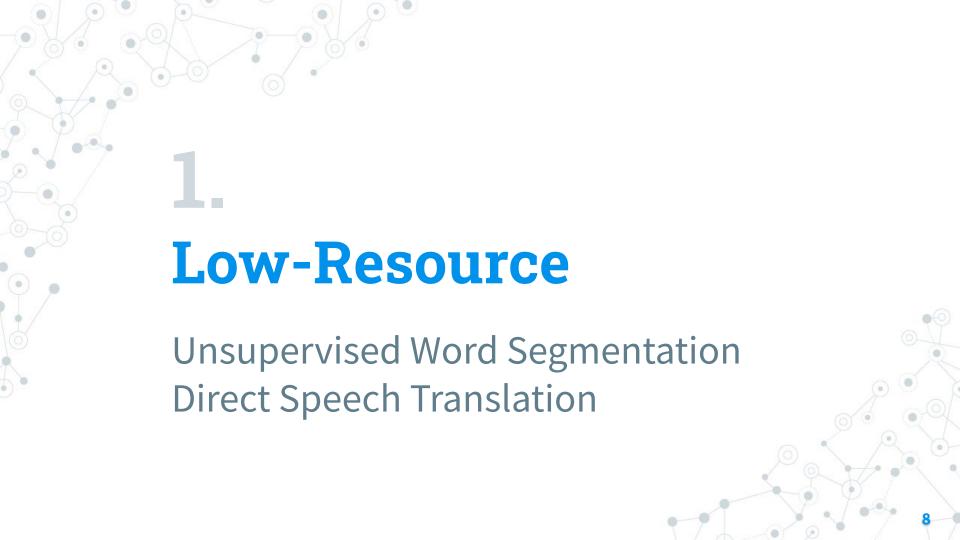
transformer layers

XLarge: 48

Transformer layers

A brief (low-resource) speech processing adventure in the realm of self-supervised models





Low-resource speech processing: Why should we care?

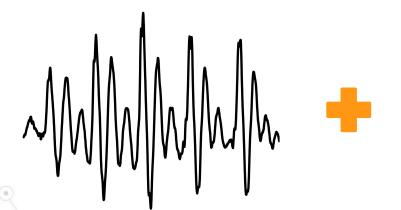
- Most of current speech technology is developed in a fraction of the existing languages and dialects ("high-resource languages") [6]
- Pipelines based on text exclude oral languages
 - "Most of the world's languages are not actively written, even the ones with an official writing system" [7]

Unsupervised Word Segmentation forComputational Language Documentation

The nature of the data:

- → Small size (difficult to collect)
- → Often lack written form (oral-tradition languages)
- → Parallel information (translations instead of transcriptions)

Figure: A field linguist recording utterances from a native speaker.



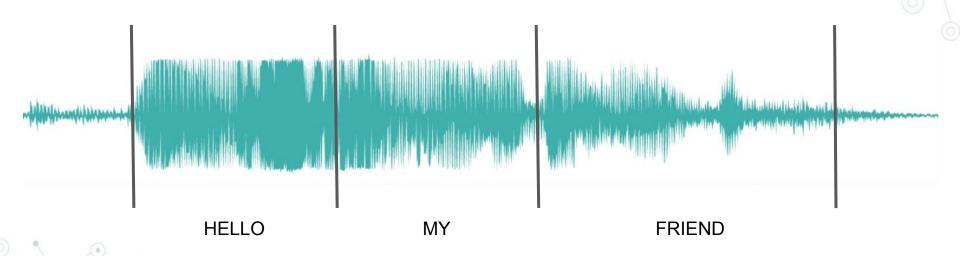
SPEECH

Translations

to a high-resource language [8]

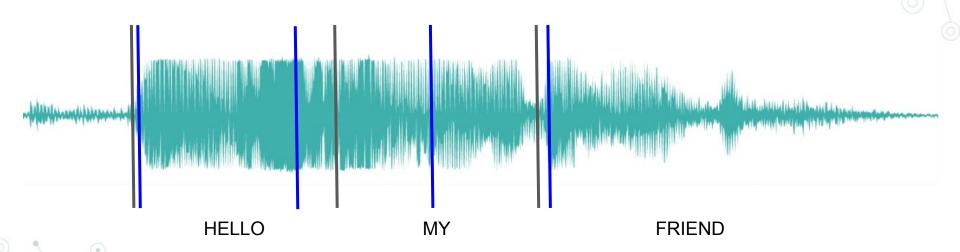
Unsupervised Word Segmentation (UWS) from speech

Example: Let's imagine the speech utterance for "Hello my friend".

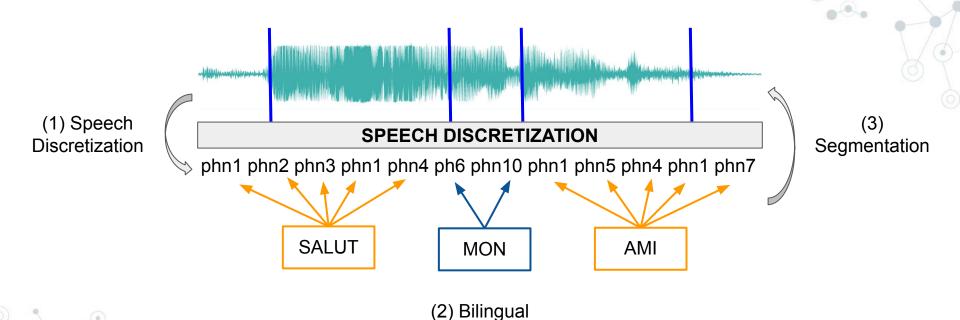


Unsupervised Word Segmentation (UWS) from speech

→ We want a system which outputs time stamps corresponding to boundaries.

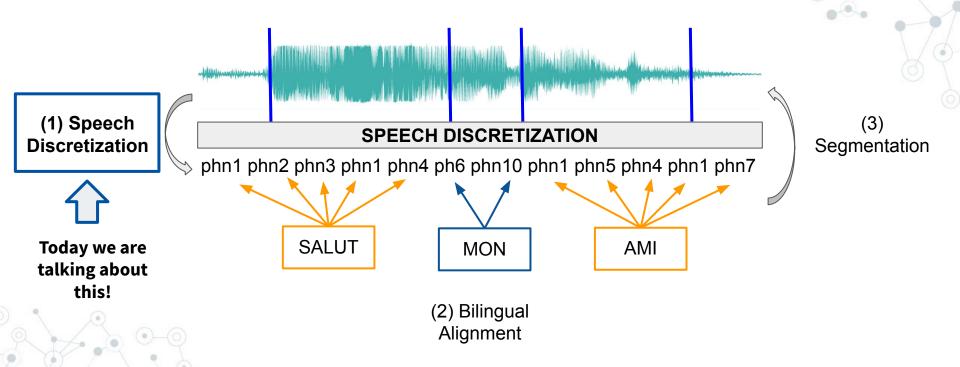


A pipeline for UWS in low-resource settings: Discretizing first, segmenting later



Alignment

A pipeline for UWS in low-resource settings: Discretizing first, segmenting later



Speech Discretization in the Low-resource Land

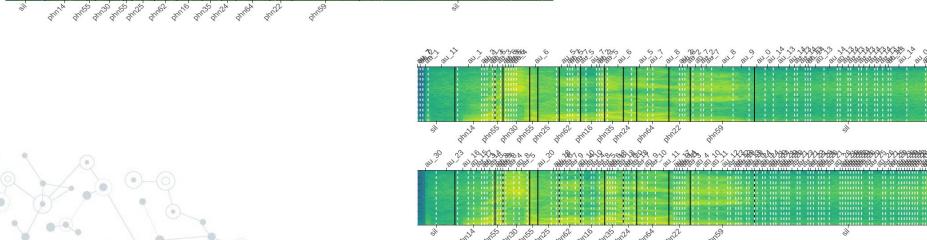
GOAL: To discretize (represent, summarize) the input speech using a collection of **discrete speech units**

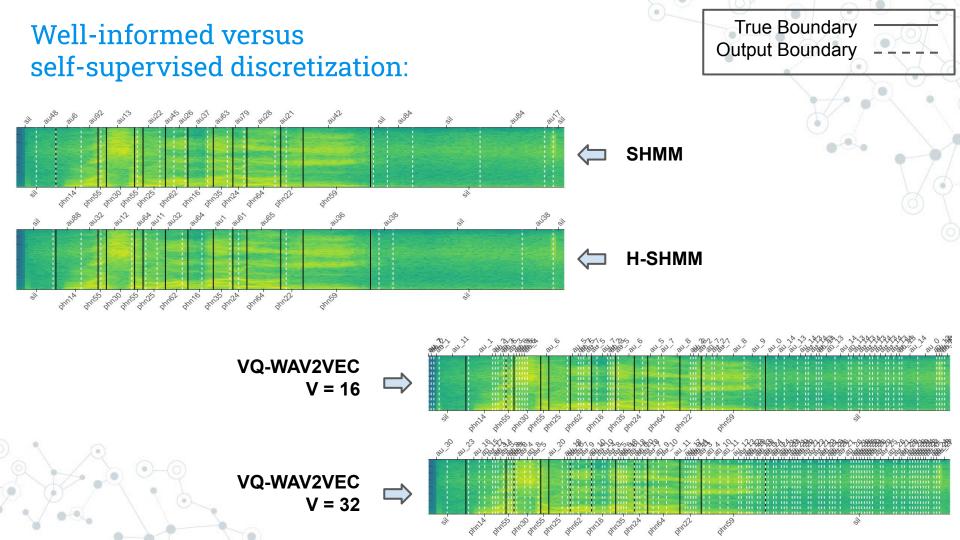
- Low-resource settings (4-5 hours of speech in Mboshi [14])
- No access to transcription

Speech Discretization in the Low-resource Land

- Vector Quantization (VQ) Approaches:
 - 1. VQ-Variational Auto-Encoder (VAE): inspired by dimensionality reduction architectures [12]
 - 2. <u>VQ-WAV2VEC</u>: inspired by self-supervised models trained with a context-prediction loss [13]
 "Why not wav2vec 2.0?" Due to the diversity loss "issue"!
- Bayesian Generative Models (AUD):
 - 1. HMM/GMM (HMM): Every possible sound can be a unit [9]
 - 2. Subspace HMM (SHMM): Prior over a phonetic subspace [10]
 - 3. Hierarchical Subspace HMM (H-SHMM): Subspace adaptation from different languages for unit prediction [11]

True Boundary Well-informed versus **Output Boundary** self-supervised discretization:





UWS results working from the discretization

Topline:

phonemic transcription

5 models, 6 setups

- **1.** HMM
- 2. SHMM
- 3. H-SHMM
- 4. VQ-VAE
- **5.** VQ-WAV2VEC **V=16**
- **6.** VQ-WAV2VEC **V=36**

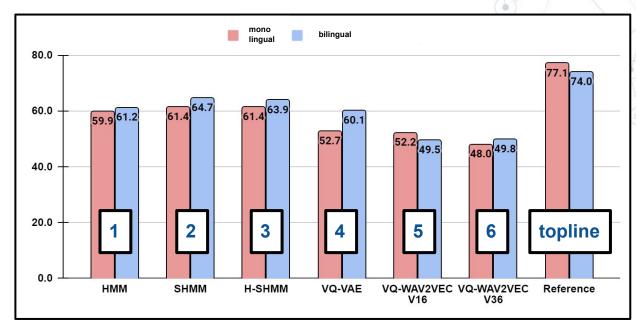


Figure: Boundary UWS F-score results for the different SD models, using the Mboshi-French dataset. The result is the average over 5 runs.

UWS results working from the discretization

Takeaways:

- → Bayesian models are not only well informed, they are also less computationally expensive:
 - Mboshi vq-wav2vec trained for 300h
 - Mboshi H-SHMM is trained in less than two days
- → Not a discretization silver bullet: vq-wav2vec (and vq-vae) discretization is not "discrete enough" for our task
 - Also verified recently in Kamper and Nieker [15]

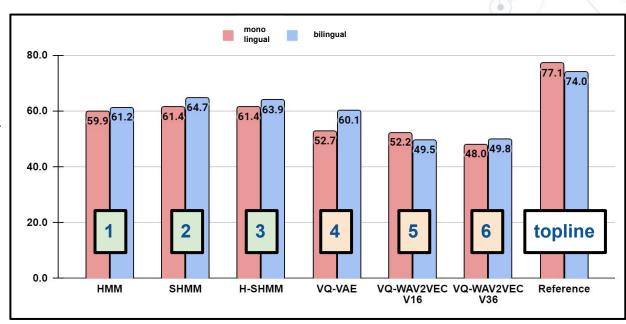
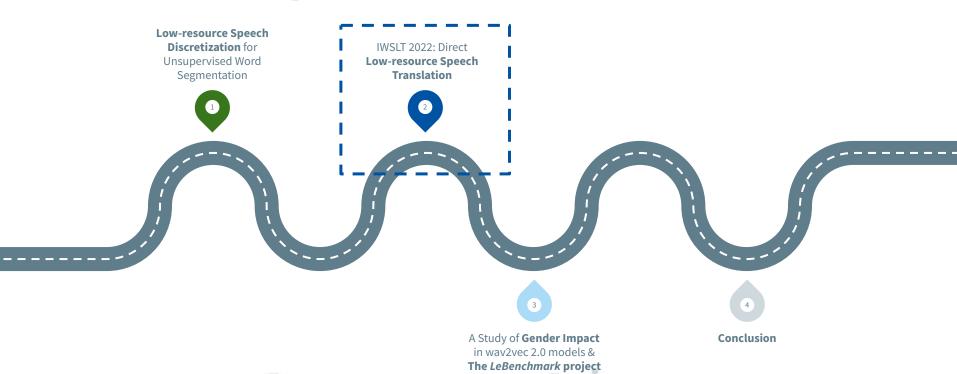
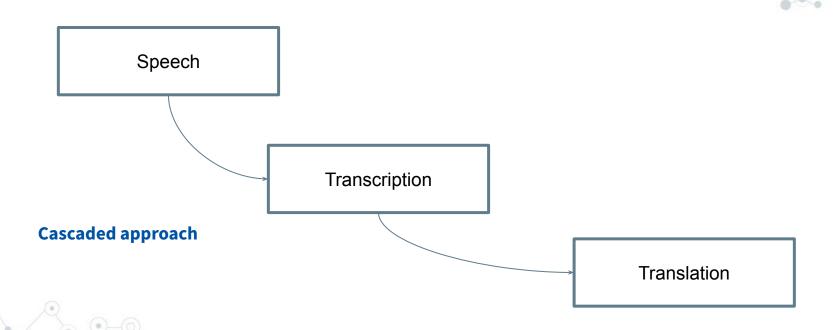


Figure: Boundary UWS F-score results for the different SD models, using the Mboshi-French dataset. The result is the average over 5 runs.

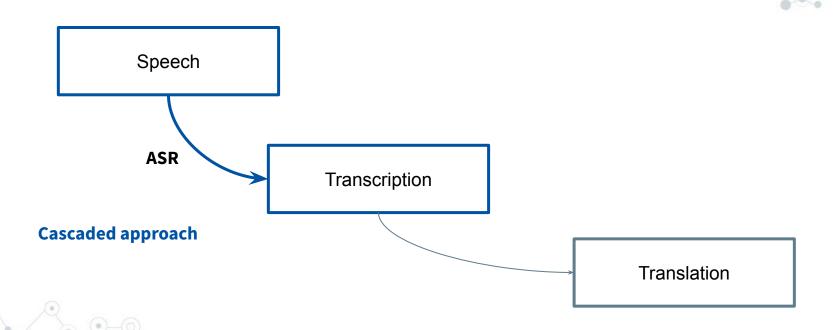
A brief (low-resource) speech processing adventure in the realm of self-supervised models



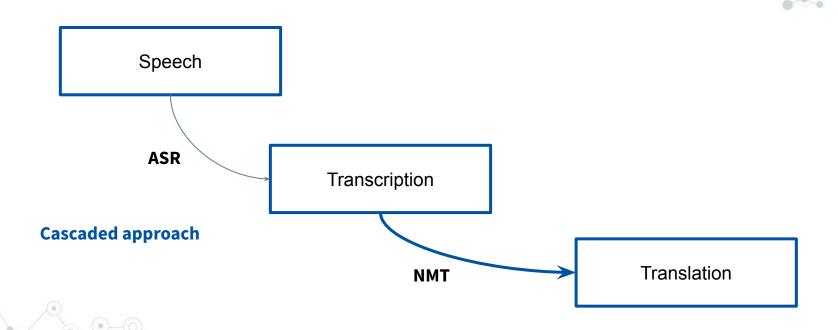
IWSLT 2022: Direct Low-resource Speech Translation



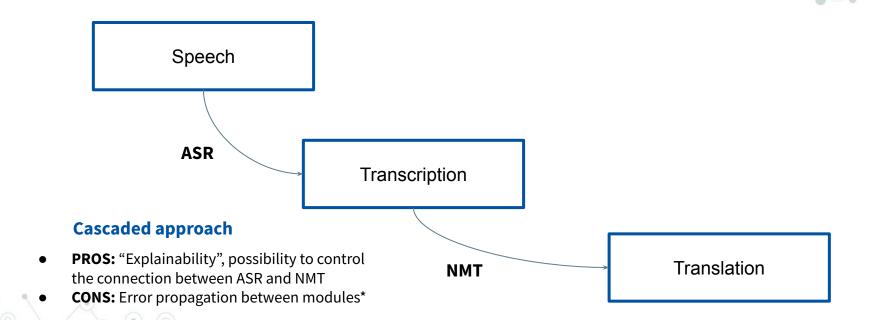
IWSLT 2022: Direct Low-resource Speech Translation



IWSLT 2022: Direct Low-resource Speech Translation



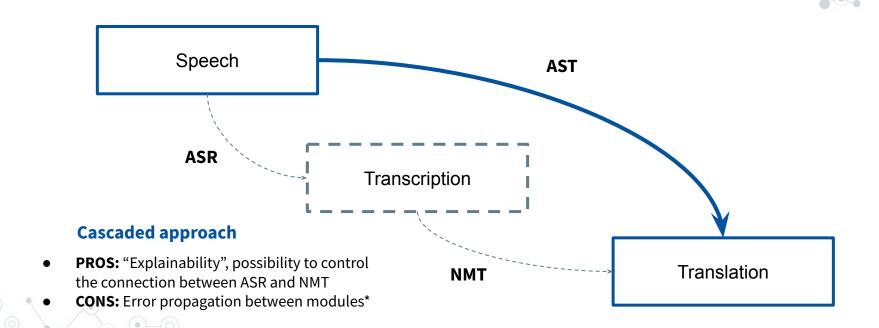
IWSLT 2022: Direct Low-resource Speech Translation



^{*} Some IWSLTs ago, organizers claimed the apparent "victory" of end-to-end ST architectures over cascaded approaches, but in the last editions there was no clear conclusion about that, with both reaching similar results [16]

IWSLT 2022: Direct Low-resource Speech Translation

Direct/end-to-end approach



^{*} Some IWSLTs ago, organizers claimed the apparent "victory" of end-to-end ST architectures over cascaded approaches, but in the last editions there was no clear conclusion about that, with both reaching similar results [16]

IWSLT 2022: **Direct Low-resource Speech Translation** Direct/end-to-end approach PROS: "cheaper" data annotation, inclusive of oral languages, no error propagation **CONS:** computationally expensive, difficult to interpret errors Speech **AST ASR** Transcription **Cascaded approach PROS:** "Explainability", possibility to control **Translation NMT** the connection between ASR and NMT

CONS: Error propagation between modules*

^{*} Some IWSLTs ago, organizers claimed the apparent "victory" of end-to-end ST architectures over cascaded approaches, but in the last editions there was no clear conclusion about that, with both reaching similar results [16]

IWSLT 2022:

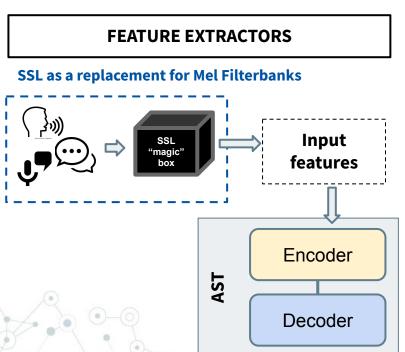
Direct Low-resource Speech Translation Task

- We gave participants 17h of speech in Tamasheq, aligned to French translations [17]
- We also shared a collection of raw audio we webcrawled and segmented:
 - 224 hours of speech in Tamasheq
 - 417 hours in 4 other languages spoken in the same region (Fula/Fulfulde, French, Hausa, Zarma)
- The data is challenging: Radio recordings in Tamasheq with interviews, street noise, simultaneous translation over original speech, music...
- Participants could use any pre-trained models or extra data they could find

IWSLT 2022:

Direct Low-resource Speech Translation Task

As participants, our interest was in the application of wav2vec 2.0 models as:



- → Inexpensive in terms of GPU
- → Multilingual models should be able to generalize to new languages
- → Application of the features into a small AST (Transformer based) architecture

IWSLT 2022: Our Methodology

Models tested:

- **LeBenchmark 7K model (large):** French model trained on **7,000h** of speech
- XLSR-53 model (large): 53 languages, 56,000h of speech
- Tamasheq-only (base): 243h of Tamasheq
- Niger-Mali (base): 658h of speech in Tamasheq + other languages (FU, FR, ZA, HA)
- Task-agnostic Fine-tuning:
 - For non-tamasheq-only models, we restart pre-training for 20k steps on Tamasheq data in order to inform the models

IWSLT 2022:

Feature Extraction (depressing) Results

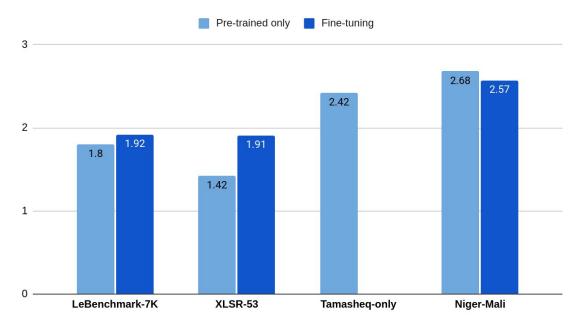


Figure: BLEU scores (test) for AST Tamasheq-French models using different wav2vec 2.0 models as feature extractors

IWSLT 2022: Feature Extraction (depressing) Results

Quick reminder: this is not WER!

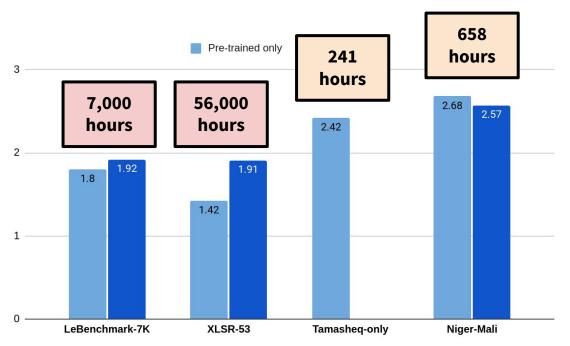
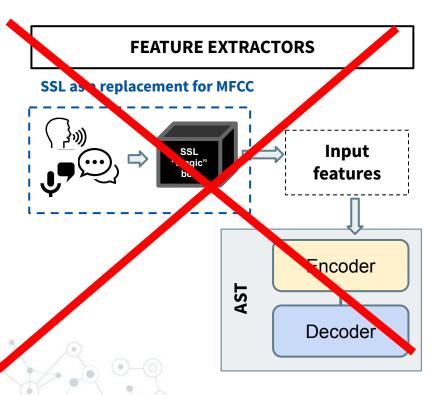


Figure: BLEU scores (test) for AST Tamasheq-French models using different wav2vec 2.0 models as feature extractors

Takeaways:

- → Larger is not necessarily better!
- Fine-tuning for reducing domain shift was not enough!
- In-domain small models seem to be "more" effective, but results are ridiculous.
- In general, it just doesn't work!

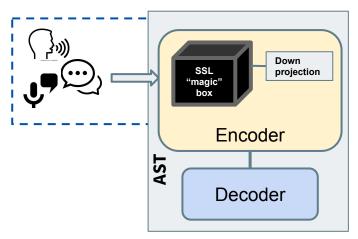
IWSLT 2022: Our Methodology



IWSLT 2022: Our Methodology 2.0

SPEECH ENCODER (Fine-tuning)

SSL as part of the AST network



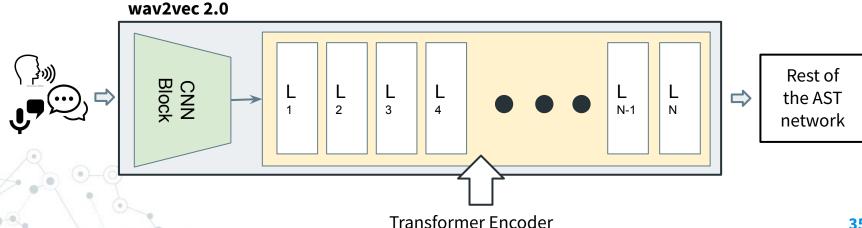
- → Use the entire model inside the AST
- → Fine-tuning everything is difficult:
 - The challenge of fitting new AST models in 32GB of GPU
 - The amount of supervised data is not a lot (large models have it worse)
- → However, if SSL model is a frozen module, we get BLEUs of 0.00...1
- → Results were overall bad, so we decided to prune our wav2vec models (inspired by [18])

Investigation in Pasad et al. [18] showed that:

- Due to the SSL training objective, the last layers of wav2vec 2.0 are guite "low-level"
- It takes the task-specific model a lot to move these weights. In their work they showed that randomly re-initializing the last 3 layers of wav2vec 2.0 models for fine-tuning resulted in better ASR.

But... We are in a low-resource setting.

If the middle layers are better informed... why don't we just chop the rest?



IWSLT 2022: How to chop your favorite wav2vec 2.0 model

Investigation in Pasad et al. [18] showed that:

- → Due to the SSL training objective, the last layers of wav2vec 2.0 are quite "low-level"
- → It takes the task-specific model a lot to move these weights. In their work they showed that randomly re-initializing the last 3 layers of wav2vec 2.0 models for fine-tuning resulted in better ASR.

But... We are in a low-resource setting.

If the middle layers are better informed... why don't we just chop the rest?

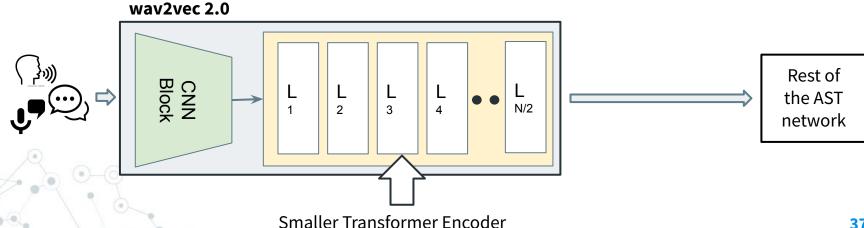
Wav2vec 2.0 Rest of the AST network

Investigation in Pasad et al. [18] showed that:

- Due to the SSL training objective, the last layers of wav2vec 2.0 are quite "low-level"
- It takes the task-specific model a lot to move these weights. In their work they showed that randomly re-initializing the last 3 layers of wav2vec 2.0 models for fine-tuning resulted in better ASR.

But... We are in a low-resource setting.

If the middle layers are better informed... why don't we just chop the rest?



IWSLT 2022: End-to-end Results (still depressing)

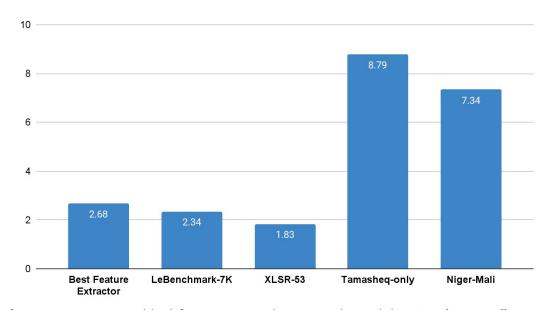


Figure: BLEU scores (dev) for AST Tamasheq-French models using **(HALF of)** different wav2vec 2.0 models

IWSLT 2022: End-to-end Results (still depressing)

Quick reminder: this is still not WER!

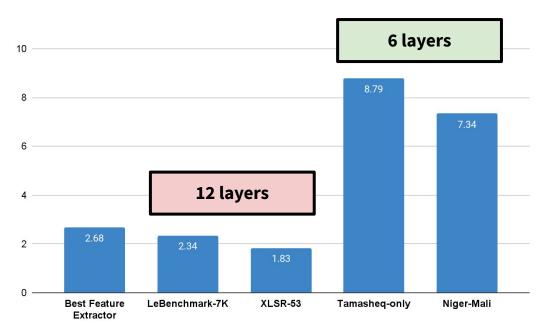


Figure: BLEU scores (dev) for AST Tamasheq-French models using **(HALF of)** different wav2vec 2.0 models

Takeaways:

- → Half of a lot is still plenty
- Just pruning large models further resulted in very bad results (explanation in [18])
- In-domain smaller models are the most effective

IWSLT 2022: Where we are at in the land of Low-resource Speech Translation

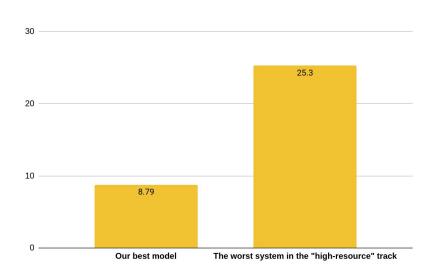


Figure: BLEU scores for our model (Tamasheq-French) and ALEXA-AI submission to Offline (English-Japanese)

Takeaways:

- Speech Translation is not a solved problem
 - Maybe "very clean non-accented without noise English-centered mTEDx speech translation" is already solved
- Depressingly we won the low-resource track with a model below 10 BLEU
- → Total lack of interest from companies in our low-resource IWSLT track (the "just buy more data" mentality is still the norm)
- → Small pre-trained models worked better than popular "general-purpose" models trained on thousand of hours
- Working with real data is difficult, there's no magic (box) solution!

2.Gender Bias

About huge models and bias in pre-training data

LeBenchmark project: Training and benchmarking wav2vec 2.0 models

→ In 2022, we trained and released the *LeBenchmark* models [19, 20]: French wav2vec 2.0 models trained with a lot of diverse audio data

Soon to be released

We benchmarked them for ASR, AST, SLU and AER.

- Our results indicate that models trained with more hours of speech produce more robust feature extractors (ASR, AST, SLU, AER).
- They were also superior as speech encoders in ASR.

- → During LeBenchmark, we collected rich metadata for the data used during pre-training
- → The resulting models present different degrees of speech style and **gender balance**

Does gender distribution in the pre-training data affects ASR/AST models?

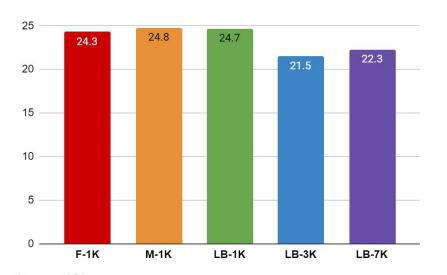
ALSO available at 🔑 *

Model	M%	F%	U%
F-1K-Large	-	100	-
M-1K-Large	100	-	-
LB-1K-Large	47.4	52.5	-
LB-3K-Large	62.2	35.2	2.5
LB-7K-Large	23.9	13.4	62.6

^{*} https://huggingface.co/LeBenchmark

Results: wav2vec 2.0 as feature extractor

NOTE: Gender balanced mTEDx datasets



15 14.97 15.99 17.44 17.5 17.5 18.25 10 F-1K M-1K LB-1K LB-3K LB-7K

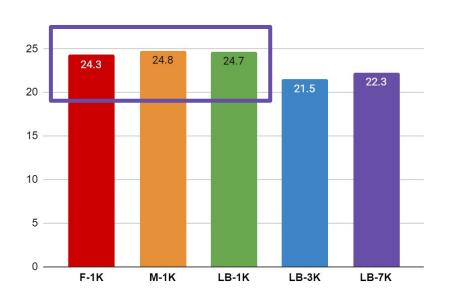
Figure: WER (\downarrow) scores for ASR (mTEDx)

Figure: BLEU (↑) scores for **AST** (fr-en mTEDx)

Results: wav2vec 2.0 as feature extractor

NOTE: Gender balanced mTEDx datasets

→ Gender-specific models are no different than the balanced model



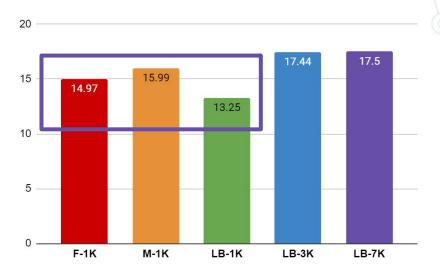


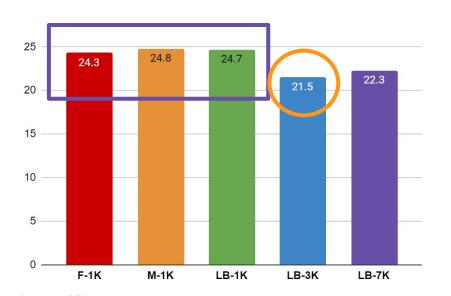
Figure: WER (\downarrow) scores for **ASR** (mTEDx)

Figure: BLEU (↑) scores for **AST** (fr-en mTEDx)

Results: wav2vec 2.0 as feature extractor

NOTE: Gender balanced mTEDx datasets

- → Gender-specific models are no different than the balanced model
- → Features seem robust to speaker information



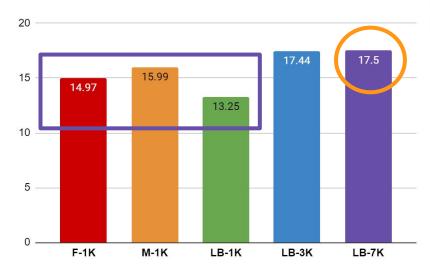


Figure: WER (\downarrow) scores for **ASR** (mTEDx)

Figure: BLEU (↑) scores for **AST** (fr-en mTEDx)

NOTE: Gender balanced mTEDx datasets

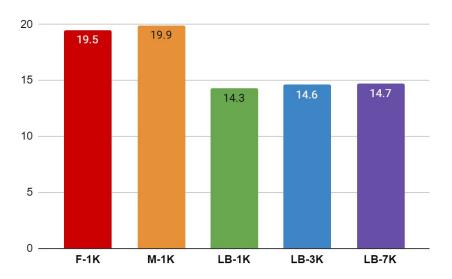


Figure: WER (\downarrow) scores for **ASR** (mTEDx)

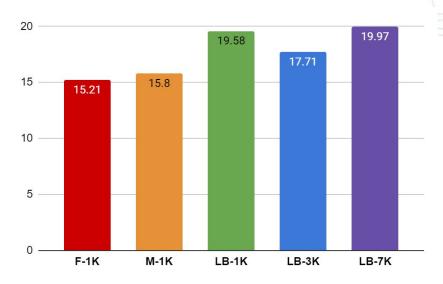


Figure: BLEU (†) scores for **AST** (fr-en mTEDx)

Results: wav2vec 2.0 as speech encoder

→ Gender-specific Models are bad!

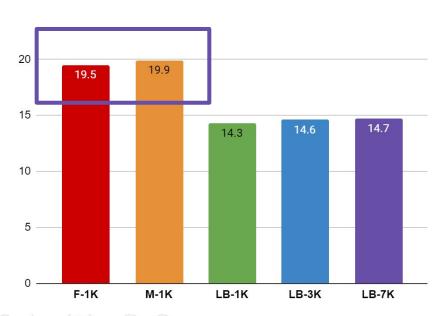


Figure: WER (\downarrow) scores for **ASR** (mTEDx)

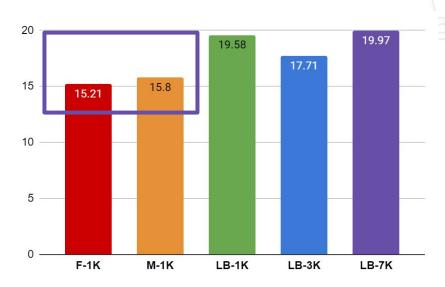
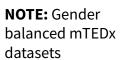


Figure: BLEU (↑) scores for **AST** (fr-en mTEDx)



Results: wav2vec 2.0 as speech encoder

- → Gender-specific Models are bad!
- → Balanced model is competitive against models trained with 3-7x more data

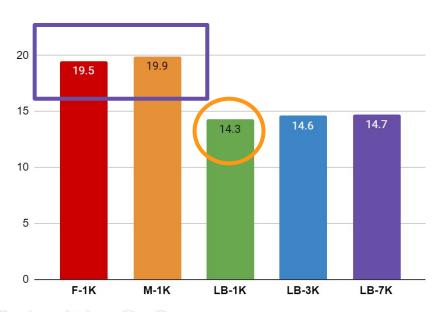


Figure: WER (\downarrow) scores for **ASR** (mTEDx)

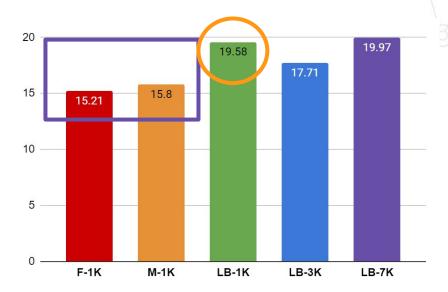


Figure: BLEU (↑) scores for **AST** (fr-en mTEDx)

That's a very steep (investigation) hill!

Takeaways:

- Limited investigation, much to be done still:
 - Better isolation of bias factors (speech style, speaker distribution...)
- Feature Extractors seem speaker independent
- Speech Encoders seem sensitive to this interference in speaker gender distribution

3. Where are we again?

And where I would like to go next

Low-resource speech discretization for UWS and speech translation:

 Pre-trained models are not silver bullets for every low-resource setting, informed smaller models are sometimes better

Gender Bias investigation:

 We (just barely) scratched the surface, but I'm generally cautious about just inserting "messy" data into huge models!

What I'm excited about right now @ UTTER Horizon Project

Multimodal contextualized speech processing for online meetings

- Multimodal: microphone information (who is speaking), video, audio, chat (text) history
- Contextualized: speaker information for disambiguation inside speech processing pipelines (Who am I speaking to? Who is this person?)
- Speech processing: simultaneous transcription and translation, summarization, automatic minuting

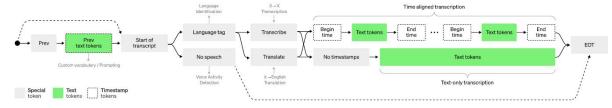
UTTER Horizon Project partners: Edinburgh University (UK), Amsterdam University (NL), NAVER LABS Europe (FR), Instituto de Telecomunicações (PT), Unbabel (PT)

What I'm excited about right now in general

Multilingual and Multi-task training instead of* SSL pre-training

Introducing Whisper

We've trained and are open-sourcing a neural net called Whisper that approaches human level robustness and accuracy on English speech recognition.



https://openai.com/blog/whisper/

Can we guide "SSL" to make it more robust?

Dataset	wav2vec 2.0 Large 960h	Whisper Large	RER (%)
LibriSpeech test-clean	2.7	2.7	0.0
Artie	24.5	6.7	72.7
Fleurs (English)	14.6	4.6	68.5
Common Voice	29.9	9.5	68.2
Tedlium	10.5	4.0	61.9
CHiME6	65.8	25.6	61.1
WSJ	7.7	3.1	59.7
VoxPopuli (English)	17.9	7.3	59.2
AMI-IHM	37.0	16.4	55.7
CallHome	34.8	15.8	54.6
Switchboard	28.3	13.1	53.7
CORAAL	38.3	19.4	49.3
AMI-SDM1	67.6	36.9	45.4
LibriSpeech test-other	6.2	5.6	9.7
Average	29.5	12.9	55.4

Table 2. Detailed comparison of robustness on various datasets. Although both models perform equally well on LibriSpeech, a zero-shot Whisper model performs much better on other datasets than expected for its LibriSpeech performance and makes 55% less errors on average. Results reported in word error rate (WER) for both models after applying our text normalizer.

Thanks to all my *hike buddies*!

- → Speech Discretization for Unsupervised Word Segmentation [21]
 - UGA, Sheffield University, Brno University, LISN
- → IWSLT 2022: Direct Speech Translation [22, 16]
 - ON-TRAC Consortium: LIA, UGA, LIUM, Airbus, ELYADATA
- LeBenchmark Project [19, 20]
 - UGA, LIA, Atos, ESPCI PSL, NAVER LABS Europe
- Gender Investigation [24]
 - NAVER LABS Europe, LIA

Thanks **JeanZay** for the 20,000 GPU hours I *burned* on your servers in 2021-2022!!!

Thanks!

Any questions?

You can find me at:

marcely.zanon-boito@naverlabs.com

BIBLIOGRAPHY

- [1] S. Schneider et al., "wav2vec: Unsupervised pre-training for speech recognition," arXiv preprint arXiv:1904.05862, 2019.
- [2] W.-N. Hsu, B. Bolte et al., "Hubert: Self-supervised speech representation learning by masked prediction of hidden units," IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021
- [3] A. Baevski, M. Auli, and A. Mohamed, "Effectiveness of self-supervised pre-training for speech recognition," arXiv preprint arXiv:1911.03912, 2019.
- [4] A. Baevski, Y. Zhou et al., "wav2vec 2.0: A framework for self-supervised learning of speech representations," Advances in Neural Information Processing Systems, 2020.
- [5] A. Babu, C. Wang et al., "Xls-r: Self-supervised cross lingual speech representation learning at scale," arXiv preprint arXiv:2111.09296, 2021.
- [6] Joshi, et al. The state and fate of linguistic diversity and inclusion in the NLP world. ACL 2020.
- [7] S. Bird, Bootstrapping the language archive: New prospects for natural language processing in preserving linguistic heritage. Linguistic Issues in Language Technology, vol. 6, no. 4, 2011
- [8] Adda et al. Breaking the unwritten language barrier: The BULB project. SLTU 2016.
- [9] Ondel et al. Variational inference for acoustic unit discovery. Procedia Computer Science 2016.
- [10] Ondel et al. Bayesian Subspace Hidden Markov Model for Acoustic Unit Discovery. Interspeech 2019.
- [11] Yusuf et al. A Hierarchical Subspace Model for Language-Attuned Acoustic Unit Discovery. ICASSP 2020.
- [12] Oord et al. Neural Discrete Representation Learning. NeurIPS 2017.
- [13] Baevski et al. vq-wav2vec: Self-supervised Learning of Discrete Speech Representations. arXiv, 2019.
- [14] Godard et al. A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments. LREC 2018.
- [15] Kamper and Nieker. Towards unsupervised phone and word segmentation using self-supervised vector-quantized neural networks. arXiv, 2020.
- [16] Anastasopoulos et al. Findings of the IWSLT 2022 Evaluation Campaign. IWSLT 2022.
- [17] Boito et al. Speech resources in the tamashed language. LREC 2022.
- [18] Pasad et al. Laver-wise analysis of a self-supervised speech representation model, arXiv preprint arXiv:2107.04734.
- [19] Evain et al. "Lebenchmark: A reproducible framework for assessing self-supervised representation learning from speech." Interspeech 2021.
- [20] Evain et al. Task agnostic and task specific self-supervised learning from speech with LeBenchmark. NeurIPS 2022.
- [21] Boito et al. Unsupervised Word Segmentation from Discrete Speech Units in Low-Resource Settings. SIGUL 2022.
- [23] Boito et al. ON-TRAC Consortium Systems for the IWSLT 2022 Dialect and Low-resource Speech Translation Tasks. IWSLT 2022.
- [24] Maison et al. Promises and Limitations of Self-supervised Learning for Automatic Speech Processing, CAID 2022.

IWSLT 2022:

End-to-End Results: Playing with the threshold

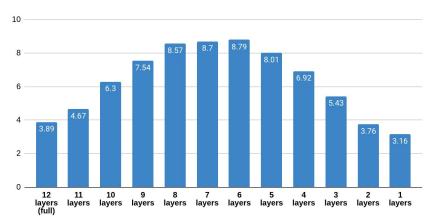


Figure: BLEU scores (dev) for AST Tamasheq-French models using different number of wav2vec 2.0 encoder layers (Tamasheq-only model)

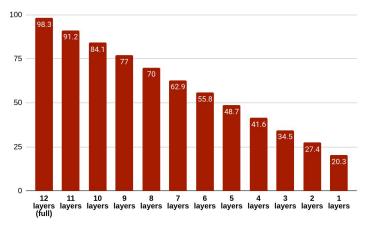


Figure: Number of parameters in millions for training a AST model with a wav2vec 2.0 base

IWSLT 2022:

End-to-End Results: Playing with the threshold

Figure: BLEU scores (dev) for AST Tamasheq-French models using different number of wav2vec 2.0 encoder layers (Tamasheq-only model)

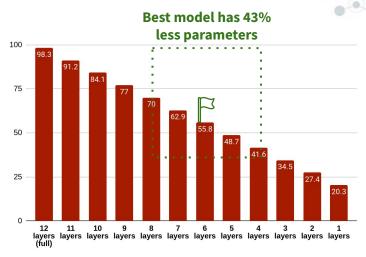


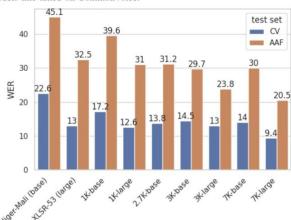
Figure: Number of parameters in millions for training a AST model with a wav2vec 2.0 base

Can we fix bias in pre-training?

Work from Lucas Maison on accented ASR from our CAID paper this year [24]

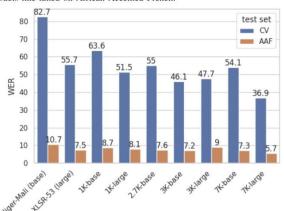
Non-accented fine-tuning

Fig. 2. ASR results (WER, the lower the better) over the two test sets for models fine-tuned on CommonVoice.



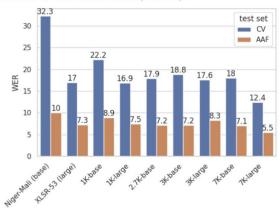
Accented fine-tuning

Fig. 3. ASR results (WER, the lower the better) over the two test sets for models fine-tuned on African Accented French.



50/50 fine-tuning

Fig. 4. ASR results (WER, the lower the better) over the two test sets for models fine-tuned on a mixed dataset (CV+AAF).



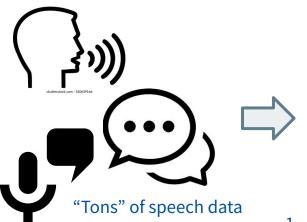
BLUE: Standard French speech ORANGE: African Accented speech

*The scale is a mess, but the message is:

50/50 fine-tuning helps recover the performance in non-accented speech, while increasing performance for accented speech

The connection: Self-supervised Speech Processing blocks

These models emerged as popular foundation blocks for speech pipelines. They are trained using only audio examples and can reach the billions of parameters [1-5].

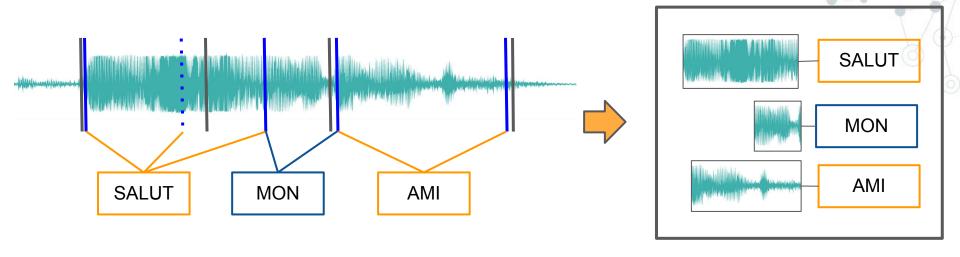


Rich and Contextualized **Speech Representation** (continuous <u>or</u> discrete)

- Pre-training from scratch if:
 - New data/domain/language/format
 - You have between 16 and 48 A100 32GB to "waste" for a month

Otherwise, general purpose models available at HuggingFace 🤪 or GitHub 🚺

A pipeline for UWS in low-resource settings: Grounding segmentation on translation



In this setting, all our boundaries have an *annotation*: the aligned bilingual information.

Speech Discretization in the Low-resource Land

- Bayesian Generative Models (AUD):
 - 1. HMM/GMM (HMM): Every possible sound can be a unit [9]
 - 2. Subspace HMM (SHMM): Prior over a phonetic subspace [10]
 - 3. Hierarchical Subspace HMM (H-SHMM): Subspace adaptation from different languages for unit prediction [11]