A small Griko-Italian speech translation corpus

Marcely Zanon Boito¹, Antonios Anastasopoulos², Marika Lekakou³, Aline Villavicencio⁴ and Laurent Besacier¹

¹Laboratoire d'Informatique de Grenoble, Univ. Grenoble Alpes, **France**²Department of Computer Science and Engineering, Univ. of Notre Dame, **USA**³Department of Philosophy, Univ of Ioannina, **Greece**⁴Institute of Informatics, UFRGS, **Brazil** and CSEE, Univ. of Essex, **UK**

GOAL: An under-resourced language corpus for Computational Language Documentation

- → REAL endangered language
- → Very low-resource
- → Parallel corpus (Griko-Italian)
- Several levels of representation

GOAL: An under-resourced language corpus for Computational Language Documentation

Highly interdisciplinary research field

Leverage of Computational Models and Machine Learning

→ Focus on endangered/unwritten languages (speech!)

OUTLINE

01. THE GRIKO CORPUS

- a. Presentation
- b. Data collection
- c. Post-processing

02. CASE STUDY

- a. Speech-to-translation Alignment
- b. Unsupervised Word Discovery

THE GRIKO CORPUS

The Griko Dialect

- → A Greek dialect spoken on south Italy (Grecia Salentina, southeast of Lecce)
- → Included as seriously endangered in the UNESCO Red Book of Endangered Languages in 1999
- Less than 20,000 native speakers (overestimation)*

The Corpus

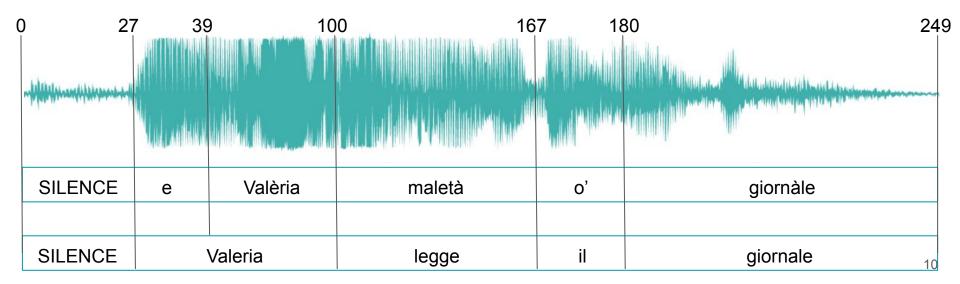
- Collected by 2 linguists during a field trip to Puglia, Italia
- Particular focus on the use of infinitive and verbal morphosyntax
- → 9 different speakers (5 male, 4 female) from 4 villages in Grecia Salentina

The Corpus

→ 330 manually segmented sentences

→ The only Griko speech dataset available online¹ (roughly 20 minutes of speech in Griko)

1. Italian translations for every utterance


Griko: Jatì iche polemisonta oli tin addomada.

Italian: Preche aveva lavorato tutta la settimana.

Example: Sentence 144

- 2. Gold-standard word-level alignment (including silences)
- 3. Gold-standard speech-to-translation alignments

Example: Sentence 1

4. Since no Griko acoustic model is available, we use unsupervised Acoustic Unit Discovery (AUD) to extract pseudo-phone units (see [1]).

Griko: Ìsose èmbi àtti finèstra

Pseudo-phones: a46 a31 a8 a31 a15 a13 a24 a31 a18 a31 a20 a11 a8 a31 a8 a31

Example: Sentence 102

5. Zero Resource Challenge 2017 Track 2¹ reference for Spoken Term (word) Discovery

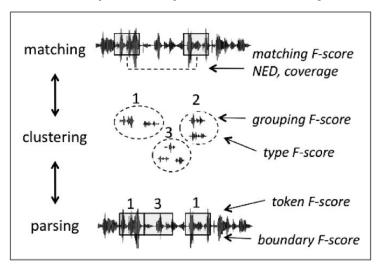


Image from The Zero Resource Speech Challenge 2017 web page¹.

¹http://sapience.dec.ens.fr/bootphon/2017/page 3.html

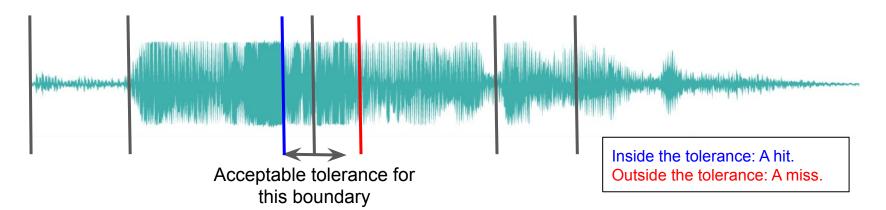
Corpus Statistics Summary

- → 330 sentences, 20 minutes of speech
- → 48 different pseudo-phones (average 24 per sentence)

	# tokens	# types	Avg tokens length	Avg tokens per sentence	Shortest token	Largest token
Griko	2,374	691	5.68	7.19	1	16
Italian	2,384	456	5.76	7.22	1	13

Table: Statistics for the transcriptions and their aligned translations.

CASE STUDY


Speech-to-Translation Alignment

- → Task: to align portions of the audio with its translation, without access to the transcription.
- → Evaluation: Links between speech frames and translation words (Precision, Recall and F-score).

Method	Precision	Recall	F-score	
Proportional	42.2	52.2	46.7	
Neural	24.6	30.0	27.0	
DTW-EM	56.6	51.2	53.8	

Unsupervised Word Discovery

- → Task: to cluster unsegmented graphemes/pseudo-phones into word-like units.
- → Evaluation: ZRC Track 2, Boundary scores (Precision, Recall and F-score).

Unsupervised Word Discovery

	GRAP	PHEMES (TOP	LINE)	PSEUDO-PHONES (SPEECH)		
Method	Precision	Recall	F-score	Precision	Recall	F-score
dpseg ¹	68.5	75.1	71.6	23.3	36.9	28.5
proportional	44.7	44.8	44.7	28.5	29.9	29.2
neural²	42.6	51.8	46.7	32.0	27.6	29.5
merged neural	50.2	54.0	52.1	34.3	26.7	30.0

Table: For graphemes segmentation, dpseg beats all other baselines, while for pseudo-phones the merged neural approach achieves better Precision and F-score.

^{*}Available at https://homepages.inf.ed.ac.uk/sgwater/, Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 317–325. Association for Computational Linguistics, 2009.

^{**}Unwritten languages demand attention too! Word Discovery using Encoder-Decoder Models

CONCLUSION

Conclusion

We presented a corpus extension for computational documentation research. The result:

→ Several levels of representation available

 Reference for ZRC spoken word discovery experiments

Conclusion

→ Freely Available on Github

antonisa/griko-italian-parallel-corpus

Thank you! Questions?

Contact: marcely.zanon-boito@univ-grenoble-alpes.fr and aanastas@nd.edu

