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-
Language Documentation

50 to 90% of the currently spoken
language will go extinct before 2100*

Manually documenting all these
languages is infeasible

"Peter K Austin and Julia Sallabank. The Cambridge handbook of endangered languages. Cambridge University Press, 2011.



-
Language Documentation

50 to 90% of the currently spoken
language will go extinct before 2100* |

Manually documenting all these
languages is infeasible

CLD GOAL: to automatically retrieve information about
language structures to language documentation

"Peter K Austin and Julia Sallabank. The Cambridge handbook of endangered languages. Cambridge University Press, 2011.



Endangered Languages Corpora

Often lack written form (oral-tradition languages)
Small size (difficult to collect)
Parallel information (replacing transcriptions)

N

Translations
to a well-documented
language’

'Adda et al. Breaking the Unwritten Language Barrier: The BULB Project. SLTU 2016.
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THE TASK: Unsupervised Word Segmentation

We focus on UNSUPERVISED WORD SEGMENTATION.

From speech

The system must output timestamps delimiting stretches of speech
corresponding to real words in the language
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THE TASK: Unsupervised Word Segmentation

We focus on UNSUPERVISED WORD SEGMENTATION.

From speech,

The system must output timestamps delimiting stretches of speech
corresponding to real words in the language;

-> Slightly more favorable setup: the speech utterances are

multilingually grounded (text translation in another language is
available) 8
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THE TASK: Unsupervised Word Segmentation
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We focus on UNSUPERVISED WORD SEGMENTATION.

Acceptable tolerance for
this boundary

The tolerance window is defined on the Zero Resource Challenge 2017 Track 2.



N
THE TASK: Unsupervised Word Segmentation
from Speech using Attention

We focus on UNSUPERVISED WORD SEGMENTATION.

W Inside the tolerance: a hit.

Acceptable tolerance for Outside the tolerance: a miss.
this boundary

The tolerance window is defined on the Zero Resource Challenge 2017 Track 2. 1



-
CONTRIBUTION:

First attempt of performing attentional (neural) word

segmentation on speech
€ Previously proposed: a model working from symbolic level' (not speech)

Low-resource setup, using only 5k sentences of the
Mboshi-French parallel corpus?

'MZ Boito et al. Unwritten Languages Demand Attention too! Word Discovery Using Encoder-Decoder Models. ASRU 2017. 1
2P Godard et al. A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments. LREC 2017.



OUR APPROACH




using Attention
BACKGROUND:

Attention-based encoder decoder models for Neural
Machine Translation (NMT) are known to jointly align and
translate a source into a target language’

We use soft-alignment probability matrices learned
during training to segment?

' D. Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015. 13
2 MZ Boito et al. Unwritten Languages Demand Attention too! Word Discovery Using Encoder-Decoder Models. ASRU 2017.



Unsupervised Word Segmentation from Speech
using Attention

NMT systems are trained with only 5k sentences

NMT system
FRENCH o
SENTENCES | ! Encoder '
| Alignment
T Model
MBOSHI —>| Decoder |
SYMBOLS L_____________/Z_____I

Post-processing and Soft-alignment '-__
Hard Segmentation Probability Matrices

A

14
'NMT implementation available at github.com/eske/seq2seq



Unsupervised Word Segmentation from Speech
using Attention

15



Unsupervised Word Segmentation from Speech
using Attention
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We would like to do
the same, but from
speech!

16



from Speech

Infeasible training the model directly from speech with only 5k
sentences

Solution: to extract pseudo-phones before training the network

We investigate Acoustic Unit Discovery (AUD) using two
different audio feature extraction methods

17



-
Acoustic Unit Discovery (AUD)

FRENCH SENTENCES
A

X X

: Aligned at thée sentence level :

¥ ¥ ¥
MBOSHI S AUDIO FEATURES L PSEUDO-PHONES
AUDIO (MFCC/MBN) (HMM/SVAE)

Two AUD models based on Bayesian Non-parametric HMM®

" Implementation available a github.com/iondel/amdtk 3 18
Variational Inference for Acoustic Unit Discovery; L Ondel, L Burget, J Cernocky; SLTU 2016.



-
Acoustic Unit Discovery (AUD)

FRENCH SENTENCES PSEUDO-PHONES:

A A A MFCC HMM

Aligned at thie sentence level : MFCC SVAE

: : : MBN HMM

v v v MBN SVAE
MBOSHI | | AUDIO FEATURES | | PSEUDO-PHONES _
AUDIO (MFCC/MBN) (HMM/SVAE) TOPLINE:

TRUE PHONES

Two AUD models based on Bayesian Non-parametric HMM®

' Implementation available a github.com/iondel/amdtk 3 19
Variational Inference for Acoustic Unit Discovery; L Ondel, L Burget, J Cernocky; SLTU 2016.



Unsupervised Word Segmentation from Speech
using Attention

5 FRENCI;I SENTENCES - \\ NMT system

: Aligned at thée sentence level \f: Encoder !

: : : L Alignment

Y Y Y ] Model
MBOSHI N AUDIO FEATURES L PSEUDO-PHONES > Decoder |
AUDIO (MFCC/MBN) (HMM/SVAE) I______________/Z_____I

A

Post-processing and Soft-alignment GEEsiiiiiiiiit
Hard Segmentation Probability Matrices P Ry

20
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Unsupervised Word Segmentation from Speech
using Attention
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enfant
mangeait
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RESULTS




Baselines Comparison

Dpseg (Dirichlet process-based bigram LM?)
Proportional Segmentation

Neural Word Segmentation?
Results are averaged over 5 runs with different splits.

Average Neural Word Segmentation
Results are obtained through averaging 5 different soft-alignment
matrices for each sentence.

'Available at https://homepages.inf.ed.ac.uk/sgwater/, parameters choice described in P. Godard et al “Preliminary Experiments on Unsupervised Word Discovery in Mboshi”, Interspeech 2016.
Sharon J Goldwater. Nonparametric Bayesian models of lexical acquisition. PhD thesis, Brown University. 2006;

S. Goldwater. A Bayesian framework for word segmentation: Exploring the effects of context. Cognition. 2009. 24
2Unwritten languages demand attention too! Word Discovery using Encoder-Decoder Models. M. Zanon Boito, A. Berard, A. Villavicencio, L. Besacier, ASRU 2017
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Results: Word Boundary Scores

B dpseg [ proportional neural [} average neural
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65.4

65

o RESULTS FOR TOPLINE:
60 The monolingual dpseg achieves the
best F-score for word segmentation
N e using the true phones.
| We observe that the proportional

50
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segmentation is particularly strong for
this language pair.
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Results: Word Boundary Scores

B dpseg [ proportional | neural [ average neural GOING TO THE NOISIER SETUP:
The performance drop (all models)
@ illustrates the challenge of the word

segmentation task from speech input

: PERFORMANCE DROP! (pseudo phones).
55
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TRUE PHONES MBN SVAE MBN HMM MFCC SVAE MFCC HMM 26
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N
Results: Word Boundary Scores

W dpseg W proporional Ml newrsl W aversgenewsl | AVERAGE NEURAL:

For speech (pseudo-phones), our
average neural system consistently
reaches the best results (precision

60
and F-score).
55
. g g g !
45
Average Neural is

40 approximately 8 points

I better than dpseg.
35
30 ;

TRUE PHONES MBN SVAE MBN HMM MFCC SVAE MFCC HMM 27
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N
Results: Word Boundary Scores

HMM RESULTS ARE WORSE:
This can be explained by the

W dpseg W proportional [ newal [ average neural simplicity of the model.
52.0 Another explanation is the higher

=l average number of pseudo-phones
46.6 i
46.5 45.2
43.8 425
41.0 =
383
35.5
32.8
30.0

49.2 48.9
46.6 46.0
(harder to segment).
7 413
It's a 3 points difference
between HMMs and
SVAEs.

generated by sentence on HMMs
MBN SVAE MBN HMM MFCC SVAE MFCC HMM 28




Results: Word Boundary Scores

BEST RESULTS:
B dpseg [ proportional [l neural [l average neural ACh|eved by US|ng the

J Multilingual BottleNeck (MBN)

52.0

49.3

46.5

43.8

41

o

38.

w

35.

o

32.

[ee]

features with the SVAE model.
MBN SVAE MFCC SVAE 29
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Results: Word Boundary Scores

BEST RESULTS:

This indicates the SVAE model
extract more consistent
pseudo-phones units.

B dpseg [ proportional [ neural [ average neural

52.0

49.3

46.5

o Phones per Sentence | Tokens per Sentence

e avg max min avg max min
o TRUEPHONES | 218 | 60 4 | 60 | 21 1
35.5

MBN SVAE 23.4 71 7 5.4 21 1

32.8

30.0

49.1
I

MBN SVAE

30
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Example: Soft-alignment Probability Matrices

Obengi atusu engwaalé
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Figure: Successful segmentation, examples of soft-alignment probability matrices.
True Phones on top and MBN SVAE setup in the bottom. 31



Example: Soft-alignment Probability Matrices

Bisi lésuusu oponga mu s'6lwngw
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— - dans

] la

EEmETEEE savane
l---l=== o

nous
mE =E avons

.
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MBN SVAE | TRUE PHONES

Figure: Failed segmentation, example of soft-alignment probability matrices.
True Phones on top and MBN SVAE setup in the bottom. 32



CONCLUSION




Conclusion

Promising results for word segmentation from speech,
outperforming two baselines in noisy (pseudo-phones)
setup

A deeper analysis of the world clusters obtained is needed
to better understand how AUD affects the word discovery
task

Word type results need improvement:
30.7% true phones, 14.1% best pseudo-phones setup

34



Thank you!

Questions?

Contact: marcely.zanon-boito@univ-grenoble-alpes.fr and pierre.godard@limsi.fr
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Results: Word Boundary Scores

AUD AUD dpseg proportional neural average neural
feat. model

P|R|F|P|R|F|P|R|F|P|R|F

TRUE PHONES | 53.8 | 83.5 | 65.4 | 445 | 626 | 52.0 | 60.5 | 59.9 | 60.3 | 62.8 | 59.3 | 61.0

Table: The monolingual dpseg achieves the best recall and F-score for word
segmentation using the true phones (topline). We observe that the proportional

segmentation is particularly strong for this language pair. .



Results: Boundary Scores

AUD AUD dpseg proportional neural average neural
feat. | model | p | R ' F | P|R|F|P|R|F|P|R|F
MFCC | HMM 41.3 46.0 48.0 48.9
MFCC | SVAE 41.7 46.6 48.5 49.2
MBN HMM 40.2 45.2 47 4 47.8
MBN SVAE 42.5 46.6 49.1 50.0
TRUE PHONES 65.4 52.0 60.3 61.0

Table: The performance drop of all models illustrates the challenge of the word
segmentation task from speech input (pseudo phones).

38



Results: Boundary Scores

AUD AUD dpseg proportional neural average neural
feat. model

P|R|F|P|R|F|P|R|F|P|R/|F

MFCC HMM | 279 | 80.2 | 413 | 426 | 499 | 46.0 | 51.6 | 449 | 48.0 | 55.5 | 43.7 | 48.9

MFCC | SVAE | 298 | 69.1 | 41.7 | 422 | 519 | 46.6 | 52.7 | 45.0 | 48.5 | 55.7 | 44.1 | 49.2

MBN HMM | 27.8 | 72.6 | 40.2 | 425 | 481 | 452 | 50.8 | 44.5 | 47.4 | 541 | 429 | 47.8

MBN SVAE | 30.0 | 72.9 | 425 | 425 | 516 | 46.6 | 57.2 | 43.0 | 49.1 | 60.6 | 42.5 | 50.0

Table: For speech (pseudo-phones), our average neural system consistently
reaches the best results (precision and F-score).

39



Results: Boundary Scores

AUD AUD dpseg proportional neural average neural
feat. model

P/ R|F|P|R|F|P|R|F|P|R|F

MFCC HMM | 279 | 80.2 | 413 | 426 | 499 | 46.0 | 51.6 | 449 | 48.0 | 55.5 | 43.7 | 48.9

MFCC | SVAE | 298 | 69.1 | 41.7 | 422 | 519 | 46.6 | 52.7 | 45.0 | 48.5 | 55.7 | 44.1 | 49.2

MBN HMM | 278 | 72.6 | 40.2 | 425 | 481 | 452 | 50.8 | 44.5 | 474 | 54.1 | 429 | 47.8

MBN SVAE | 30.0 | 729 | 425 | 425 | 516 | 46.6 | 57.2 | 43.0 | 49.1 | 60.6 | 42.5 | 50.0

Table: HMM models achieved worse results than SVAE models. This can be
explained by the simplicity of the model. Another explanation would be the average
number of pseudo-phones generated by sentence, which is higher on HMM models

(harder to segment). 0



Results: Boundary Scores

AUD AUD dpseg proportional neural average neural
feat. model

P/ R|F|P|R|F|P|R|F|P|R|F

MFCC HMM | 279 | 80.2 | 413 | 426 | 499 | 46.0 | 51.6 | 449 | 48.0 | 55.5 | 43.7 | 48.9

MFCC | SVAE | 298 | 69.1 | 41.7 | 422 | 519 | 46.6 | 52.7 | 45.0 | 48.5 | 55.7 | 44.1 | 49.2

MBN HMM | 278 | 72.6 | 40.2 | 425 | 481 | 452 | 50.8 | 44.5 | 474 | 54.1 | 429 | 47.8

MBN SVAE | 30.0 | 729 | 425 | 425 | 516 | 46.6 | 57.2 | 43.0 | 49.1 | 60.6 | 42.5 | 50.0

Table: Best results were achieved by using the Multilingual BottleNeck (MBN)
features with the SVAE model. This indicates this model extract more consistent

pseudo-phones units.
41



from Speech

Two AUD models based on Bayesian Non-parametric HMM:

B

AUDIO FEATURES
EXTRACTION

—

>

HMM

7 Hidden Markov Model
~.|  SVAE

Structured Variational
AutoEncoder

AMDTK"
ACOUSTIC UNIT DISCOVERY

" Implementation available a github.com/iondel/amdtk
2 Variational Inference for Acoustic Unit Discovery; L Ondel, L Burget, J Cernocky; 2016

MFCC HMM

MFCC SVAE

MBN HMM

MBN HMM

(These + translation are
the NMT system input!) 42




